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Abstract

A system of differential equations for the flow velocity components V. , A
and Vz in axisymmetric high-beta plasmas is derived from the equilibrium
equation and from transport equations. |t is proved that the equation for ry,.,
used in the Garching high-beta transport code, represents a special case

of this system with Br and the z-derivatives equal to zero. An important result
is that the components 16 and |§ do not enter into the cylindrical slab case.
The local plasma flow is driven by diffusion and by the gradients of heating
and loss power. Special cases of the one-dimensional equation are studied

analytically and compared with the numerical simulation of the full transport

problem.




1. Introduction

It is generally supposed that an economic reactor needs a higher beta than has

been achieved in present tokamaks. In future machines larger poloidal beta

values will be aimed at by applying considerably increased heating power. In

recent years tokamak-like configurations with high beta values have been generated
by shock heating. Especially in belt-pinches with strongly elongated cross-sections
it has been possible to achieve poloidal beta values equal to the aspect ratio and
high-beta periods of about 100 ps. Consequently, in belt-pinches diffusion processes
are growing more and more important, in contrast to other pinch plasmas, which

are governed by the dynamics on the fast MHD time scale.

When describing transport processes on the diffusion time scale by fluid models,

the flow velocity of the plasma has to be determined. In doing this, the introduction
of the fast MHD time scale, e.g. by using inertial forces, must be avoided. Other-
wise the calculation will not be able to simulate transport processes for a sufficiently
long period of physical time. In the high-beta case the calculation of plasma flow
becomes more difficult than it is at low beta because a system of differential equations
for the velocity components has to be solved, which is derived from the equilibrium
equation and from transport equations. This way had to be followed when the Garching
high-beta transport code was developed /1, 2/, which in the meantime has been
successfully used in transport investigations of high-beta plasmas in the presence of

light impurities (oxygen and carbon) and neutral hydrogen /3, 4, 5/.

In Section 2 we derive the system of differential equations for the flow velocity
components in axisymmetric high-beta plasmas. These equations are represented in
cylindrical coordinates, so that they can be specialized to the cylindrical slab case
modelled by the high-beta transport code. By this procedure the differential equation
for the radial velocity component V[ in Ref. /2/ has now been derived from more
general grounds and the role of the other velocity components V. and \2 made clear.

e
The differential equations for the complete transport problem are rather complicated,



already in one dimension, and need a numerical treatment. In Section 3 we .

discuss some special cases of the equation for V. and deal with the role of the
loss or heating power on plasma flow, on compressional heating or expansional
cooling and on convective heat transfer. Results are compared with numerical

solutions of the full one~dimensional transport problem.

2. Flow Velocity in Axisymmetric High-Beta Plasmas

In this section we derive the system of differential equations determining the flow
velocity in two-fluid, axisymmetric high-beta plasmas from the equilibrium
equation and from transport equations. They are represented in cylindrical

coordinates ¥, O and z. All three velocity components '\'/,, ‘é and l; must

be taken into account.

Differentiation of the equilibrium equation
-~
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with respect to time yields
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By introducing D = é’%% and using Ampere 's law
- -2
P = l;f_ Tx 3
one obtains

23 __".’ = < - = =
Tap=ixD+ 5 (VxD)x2 0

where Qf can be derived from the sum of the energy equations for electrons and

ions:
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where q, and q; describe the heat conduction due to electrons and ions, W s
an additional heating power and Prcd is composed of bremsstrahlung, impurity
line radiation and losses due to ionization of impurities. If problems with constant
temperature and thus density on flux surfaces are to be treated, the divergence of
surface velocity components can be set equal to zero. As the current density q.‘{/

perpendicular to flux surfaces vanishes, ( Ve_ )‘P = ( V. ),,results, yielding
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It should be noted that the plasma flow is determined by g% , i.e. by the

and reads

energy equations, and by magnetic field contributions. The continuity equation
only enters implicitly, when the density and temperature variations have to be

calculated, too.

In cylindrical coordinates one finds
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By substituting T g and D in Eq. (1) the following generally valid system
of differential equations is derived:

r-component
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Q - component
J 2 '
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In order to find the set of equations for V ¢ lg and ¥, the V - dependent terms
of H and E are needed From the generallzed Ohm s law one obtains in very good

approximation E-——- xR +MJ , yielding
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After substituting H and E one arrives at a rather complicated system of second-order
differential equations with two space coordinates r and z and three velocity
coordinates V., V6 and Vz , which can only be solved numerically.

We now specialize Egs. (3), (4) and (5) by setting B, and all z-derivatives equal

to zero to the cylindrical slab case, which was modelled by the Garching high-

beta transport code. All terms of the 8 and z-component vanish and the r-component

reads:
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The expressions for J and E reduce to
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By inserting H, 3‘ andE into Eq. (6) and by using again the pressure balance

relation the following second-order differential equation for r" v, is obtained

after a rather lengthy calculation:

(rip)-BE(riz)+Criz=D=0 )
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Apart from neutral hydrogen terms of the three=fluid model, which have not been
taken into account here, equation (7) is identical to the differential equation for
rv, givenin Ref. /2/. Thus, it has been proved that this equation is a one-
dimensional special case of the general axisymmetric problem. It represents the
only equation to be solved because the 8 and z-components (Eqgs. (4) and (5))
vanish. Obviously, the surface velocity components Vg and V,, do not enter in
one-dimensional geometry because they only occur in expressions with B, (= 0)
and z-derivatives (= 0) as factors. Ve and V, are arbitrary and must not be
calculated, which means a considerable simplification compared with the two-

dimensional case.

It should be mentioned that the general axisymmetric problem can be treated in
flux-surface coordinates ‘70 , & and % ,as well /6/. A very difficult non=
standard equation that contains flux-surface averages is obtained from which, in
principle, V‘f’ can be determined. In flux-surface coordinates the expression

r I’)3 V‘f' occurs with h3
which for cylindrical flux surfaces with ,13= 1 and V"f' = l/r reduces to the
rv in Eq. (7).

being the metric coefficient of the % - coordinate,

3. Discussion of One-~Dimensional Plasma Flow

The complete transport problem of high-beta plasmas has been solved numerically
in one dimension. In order to get relations that can be used to judge more compli-
cated, e.g. two-dimensional, situations, we shall discuss several special cases

of Eq. (7) for r;/r and simulation experiments for the standard case of Belt-
Pinch lla.

If one assumes D = 0 in Eq. (7) the trivial solution V‘Vr. = 0 results, which means

that the plasma is at rest in the region with D = 0. Consequently, the only driving




forces for plasma flow occurin D = V'%—E— + 2 P , namely diffusion and

the gradient of heating and loss power. When there are no gradients of radiation
losses, heat conduction losses and additional heating power present, the plasma
flow is caused by diffusion and ohmic heating only. On the other hand, in the

ideal MHD case ( 4 = 0) the flow of plasma results from gradients of heating

and loss power alone, the larger velocities corresponding to the steeper gradients.
This is the typical situation of present belt-pinch plasmas, where the magnetic

field diffusion is relatively slow and the impurity radiation losses are dominant

/4, 5/. It is obvious from Eqs. (1) and (2) that also two-dimensional velocity fields
can be interpreted in terms of the gradients of heating and loss power. The cylindri-
cal slab model with a pressure profile and a radial gradient of radiation losses equal
to those in the midplane of Belt-Pinch lla should yield roughly the radial velocity
distribution of the experiment. In two dimensions, however, the axial gradient of
the loss power must drive an additional v flow, which changes its direction in the
midplane and which results in a stronger compression than in the one-dimensional
case. Indeed, this is found when comparing the density compression near the centre
predicted by the high-beta transport model with the measured density increase in
Belt-Pinch lla /5/.

Simulation experiments for belt-pinches and hotter high-beta plasmas have shown that
the velocity field of plasma flow is indeed determined by the space dependence of
the loss power due to impurities Prod' At the beginning Prad exhibits a maximum

near the ma gnetic axis and the plasma flow is directed to this region (see Fig. 1).
This situation is maintained until the radiation losses drop sharply owing to the
ionization of O VI in the centre to the helium-like state. Then, a hollow Prc:d
profile develops, the gradient of Prad becomes smaller than it is for the other

loss processes and the plasma flow is no longer directed to the central region.

The next special case to be discussed has a beta equal to one, corresponding to

vanishing magnetic fields B9 and Bz and to a constant pressure Py If heat



conduction, but not convective heat transfer, is neglected in Eq. (7) and if there

is no additional heating source, one obtains
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This equation can also be derived directly from Eq. (6), i.e. from ;%—f—/- =0. It

can be solved for a special case P = C /r which has been Found in a region
around the magnetic axis by the fransport code calculations. cj is a positive

constant. The solution reads

rv. =-2% r4g

r 5 P
It is interesting that in the simulation of the full problem this linear ¥ - dependence
of ¥, isfound (see Fig. 1) and that it occurs in the range where Prad is given
by C,,/P. Increasing the radiafion power and thus < results in a steeper slope. At
first sight it is surprising that the highly simplified 8 =1 model yields these good
results. An explanation is given by an expansion of Eq. (7) around the axis with
redisticfields but without diffusion and heat condution, which shows that the
Cr‘&j,. - term may be neglected. Thus, the 8 =1 case with C = 0 is not a bad

approximation.

The second term in Eq. (8) represents the compressional heating or expansional
cooling Pcom = - p¥¥ . Another velocity dependent expression in the energy
B L
- ° ° P a2 V °
equation is convective heat transfer Pconv V[z P ) » which for
f=1is equal to 3/2 Pcom' With P = 61/1” in Eq. (8) it is found that Pcom

rad
amounts to 40 % and Pconv to 60 % of the radiation power. These values are
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upper limits that cannot be reached in the general case, where the magnetic ‘

field has to be compressed together with the plasma. The numerical treatment

of the complete problem for Belt-Pinch lla resulted in a Pcom of typically 20 %
. " ! 3 2=

P . 4 P s —3— P BRI
of rad (see Fig. 2). Generally, it holds that conv- 2 Peom™ 2 Vv VP
the second term being negative or zero, P reaches 3/2 P only at the
conv com

-3
magnetic axis (VP = 0) or at a position with vanishing V‘f‘ .

The relation Pcom / Prod from a simulation experiment for the standard case of
Belt-Pinch lla is plotted as a function of r for t = 40 and 64 ps in Fig. 2. The
dashed curve is obtained for t = 40 ps by the above described expansion near the
axis for general beta and without heat conduction. One can conclude that the
weak r-dependence of Pcom /4 Prad in the full problem results from heat conduction
that has been shown to be important in the local energy balance /5/. It is very
likely that the approximate proportionality in the central plasma region between
the compressional heating power and the power loss due to impurities is also
present in two dimensions. A corresponding expansional cooling is produced by a

source of additional heating power.

4, Summary

The plasma flow in axisymmetric high-beta configurations has been determined from
the pressure balance and from transport equations. A system of three differential

equations for the flow velocity components Vr
has been proved that the differential equation for ¥'V;. used in the Garching high-

2 Ve and Vz has been derived. It

beta transport code /2/ represents a special case (Br = 0 and vanishing z-derivatives)
of the general system of equations. The velocity components Vg and V2 do not
enter the one-dimensional problem and must not be calculated. A general result,
valid also in two dimensions, is that the plasma flow is driven by the gradients of
heating and loss power and by diffusion, the larger velocities corresponding to

steeper gradients and higher resistivity. For a given profile of loss power a somewhat

stronger compression is expected in two dimensions.



-1 -

The special case with § =1, no heat conduction and no additional heating source
has been analyzed. For a radiative power of the form Prad = C1/r' a solution for
rVr is obtained that linearly depends on ¥ in agreement with the simulation
results. Under these conditions compressional heating power Pcom amounts to

40 % and convective energy transfer P to 60 % of P__ . Both values for the
conv ra

d
field-free case are upper limits because in the general case the magnetic field has
to be compressed together with the plasma. Simulation experiments have shown
that Pcom 4 Prod has a wedk r-dependence, which results from heat conduction.
One can conclude that Pcom should be roughly proportional to Prod also in two-

dimensional geometry.
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Figure Captions

Fig. 1 Computed ¢, - profiles in the standard case of Belt-Pinch lla.

Fig. 2 Weak r-dependence of the ratio of compressional heating power

P to impurity loss power Pm in the central plasma region.
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